
Hyperspace: A Peer-to-Peer Artificial Intelligence Network

HyperspaceAI (gutenberg@hyperspace.us)

<Nov 19th 2023>

Contents

1 BACKGROUND 2
1.1 Distributed Hash Tables 2

1.1.1 Kademlia DHT 2
1.1.2 S/Kademlia 2
1.1.3 Suzaku and Kirin 2

1.2 Equilibrium of Computation Exchange 2

2 Hyperspace Protocol Design 3
2.1 Identity 3

2.1.1 Address Assignment 3
2.1.2 Message Signing 4

2.2 Model 4
2.2.1 Threshold Signature 4
2.2.2 Hash Functions 4
2.2.3 Hyperspace community servers

and Hyperspace inference nodes 4
2.2.4 Fraud Proof 5
2.2.5 Challenge Model 5
2.2.6 Assumptions 6

2.3 Economics 6

3 Reference 6

Abstract

In an age of unprecedented technological growth, the
US has recently introduced an executive order that
seeks to regulate large language models and the wider
realm of artificial intelligence (AI). While the inten-
tions may be to maintain security and national in-
terests, this policy document inadvertently poses sig-
nificant constraints on innovation, with far-reaching

implications that spill over to the entirety of the digi-
tal world. As the definition of AI gets stretched to its
broadest form, virtually any online recommendation
system – from Google’s search to Yelp’s restaurant
suggestions – falls under the purview of these new
regulations. The brunt of this is felt the hardest by
open-source projects, which face severe constraints,
particularly those with models exceeding 10B param-
eters. This restrictive atmosphere threatens to stifle
the smaller players while benefiting those with the
resources to navigate the intricate compliance land-
scape – a classic example of regulatory capture.

Moreover, the policy demands an unprecedented
level of surveillance on the location and compute of
even decentralized networks, heralding what might be
termed as the dawn of the "AI-industrial-complex".
The added bureaucratic layers not only increase costs
for companies but also unjustly treat models re-
quiring significant computational power as potential
threats.

In response to these stringent policies, we introduce
"HyperspaceAI", an open standard protocol designed
for distributed model inference. As staunch advo-
cates of decentralization, we are committed to pro-
mote genuine use-cases for trustless protocols. The
current regulatory landscape presents a compelling
case where blockchains and decentralized systems
could potentially supersede "yet to be established"
regulations. HyperspaceAI champions the cause of
decentralization, ensuring that the power of AI re-
mains widespread and doesn’t consolidate among a
select few. Through HyperspaceAI, we offer a glimpse
of a future where AI is democratized, without the
constraints imposed by misguided policy decisions.

1

1 BACKGROUND

Going through important properties of AI that plays
central roles in the protocol.

1.1 Distributed Hash Tables

Distributed Hash Tables (DHTs) are foundational
components in decentralized systems, enabling the
storage and retrieval of data across a distributed set
of nodes without relying on a central authority.

1.1.1 Kademlia DHT

Kademlia (Maymounkov, Petar and Mazières, David,
2002) is a distributed hash table (DHT) protocol that
provides a decentralized way of storing and retrieving
data across a network of peers.

• Distributed Hash Table (DHT): Enables decen-
tralized storage and retrieval of data.

• XOR Metric: Used as a distance measure for
efficient routing.

• Node Lookup: Nodes locate each other based on
their IDs for low-latency data retrieval.

• Bucket Lists: Nodes maintain lists of peers in
“buckets” based on distance.

• P2P Applications: Backbone for many peer-to-
peer networks, including BitTorrent’s DHT sys-
tem.

1.1.2 S/Kademlia

S/Kademlia (Baumgart, Ingmar and Mies, Sebastian,
2007) is an extension of the Kademlia protocol, de-
signed to offer enhanced security features.

• Enhanced Security: Specifically designed to im-
prove upon Kademlia’s resistance to Sybil and
Eclipse attacks.

• Node ID Generation: Incorporates crypto-
graphic puzzles to make ID generation compu-
tationally expensive.

• Public Key Infrastructure: Every node has a
pair of public and private keys, making identity
spoofing difficult.

• Node Lookup: Ensures nodes interact with
trustworthy peers by using signed messages.

• Refresh Mechanism: Regularly changes node IDs
to counter long-term Sybil attacks.

• Bucket Refreshment: Mandates regular bucket
updates to guard against Eclipse attacks.

1.1.3 Suzaku and Kirin

In our study, we have been deeply impressed by the
advancements in Distributed Doubly Linked Lists
and the Suzaku Distributed Hash Table (DHT) con-
cerning CHURN resiliency. Notably, the ability to
achieve liveness without necessitating locking, all
while preserving the integrity and consistency of the
DHT, stands out as a significant achievement.

• Novel key-order preserving structured overlay
network designed for efficient range queries.

• Unlike Chord# (Stoica, Ion and Morris, Robert
and Liben-Nowell, David and Karger, David R.
and Kaashoek, M. Frans and Dabek, Frank and
Balakrishnan, Hari, 2003), Suzaku features a bi-
directional finger table, achieving [log2 n] − 1
maximum lookup hops when converged.

• Suzaku’s algorithms handle node insertion and
deletion, maintaining strong lookup performance
even amidst network changes (churn).

• Simulation evaluations showed Suzaku outper-
forming conventional networks such as Chord#
and Skip Graph.

1.2 Equilibrium of Computation Ex-
change

We’re looking into definining a protocol that relies on
global computational collaboration, that means that
we need to give valid incentive to all the participents
of the network to share and exchange their computa-
tion power.

2

Going a BitTorrent-like route we’d like to quote
(Cohen, Bram, 2003) Incentive builds robustness

In the realm of distributed inference, we are en-
deavoring to formulate a protocol contingent upon
collaborative global computation. This necessitates
the establishment of cogent incentives to galvanize
all network participants to proactively allocate and
exchange their computational resources.

Invoking a paradigm analogous to BitTorrent, we
reference Cohen’s assertion in (Cohen, Bram, 2003):
“Incentive builds robustness.”

There exists a potential avenue to explore a
reciprocity-based equilibrium, reminiscent of BitTor-
rent’s “tit-for-tat” strategy. Alternatively, we are
contemplating a framework where computational re-
sources are furnished at a legitimate cost, as dynam-
ically determined by the network. This approach de-
mands intricate modelization and predictive analy-
sis, aligning with the computational characteristics
of HyperspaceAI. More on that.

2 Hyperspace Protocol Design

The model presupposes an asynchronous distributed
system. Within this system, nodes are intercon-
nected through a nodes called Hyperspace Commu-
nity Server (HCS). It’s acknowledged that this net-
work might exhibit certain inefficiencies: it might not
deliver messages, could delay, duplicate, or even re-
arrange them.

2.1 Identity

Entities within the system, referred to hereafter
as nodes, are uniquely recognized by an identifier
termed the NodeAddress. This NodeAddress is not
merely a manifestation of a node’s public key; rather,
it represents the cryptographic hash of such public-
key. The rationale for adopting the cryptographic
hash in lieu of the raw public-key stems from specific
security concerns intrinsic to decentralized systems,
notably the mitigation of both sybil and eclipse at-
tacks, especially when operating in the absence of a
centralized, trustworthy authority.

2.1.1 Address Assignment

The employment of a cryptographic puzzle, partic-
ularly the Proof of Work (PoW) mechanism, serves
to fortify the network against the aforementioned at-
tacks. However, the use of such crypto puzzles as
identity confirmations is a contentious topic in the
academic realm. For instance, Castro et al. in their
seminal work in 2002 (Castro, Miguel and Druschel,
Peter and Ganesh, Ayalvadi and Rowstron, Antony
and Wallach, Dan S., 2002) contended against the
utilization of crypto puzzles for identity verification.
Their reservations emanated from two primary rea-
sons: firstly, the inherent inability of crypto puzzles
to entirely obviate the risk of an attack, and secondly,
the computational overhead they introduce. In this
context, “overhead” pertains to the computational
cost associated with resolving a crypto puzzle. For
optimal functionality, this cost needs to be manage-
able for the least performant, legitimate node. Con-
currently, the puzzle’s complexity should be robust
enough to deter or considerably decelerate an adver-
sary equipped with high computational resources.

Figure 1: Static node adress generation crypto chal-
lenge

Notwithstanding the above concerns, our position
aligns with the perspective that, in environments
devoid of centralized trust entities, crypto puzzles

3

emerge as the most pragmatic approach for the gen-
eration of distributed node IDs. This is due to their
potential in amplifying the difficulty level for poten-
tial adversaries aiming to compromise the network.
In essence, for networks operating in entirely decen-
tralized milieus, leveraging cryptographic techniques
to maximize attack resilience becomes not just prefer-
able, but imperative.

2.1.2 Message Signing

In advocating for the utilization of a hash over a pub-
lic key to generate the nodeId, we emphasize the abil-
ity to employ this public key for signing messages
exchanged among nodes. Given computational con-
straints, we classify message signatures into two dis-
tinct types:

• Weak signature: The weak signature does not
encapsulate the entirety of the message in its
signature. Instead, it confines its scope to the
IP address, port, and an associated timestamp,
which delineates the signature’s validity dura-
tion. This design counters replay attacks if
dynamic IPs are used. To accommodate syn-
chronization variances, timestamps might be de-
signed with a broad granularity. The weak sig-
nature is used where complete message integrity
is not deemed critical (PING messages for exam-
ple).

• Strong Signature: Contrary to the weak signa-
ture, the strong variant signs the full message
content, ensuring the message’s integrity and
bolstering defenses against potential Man-in-the-
Middle attacks. To thwart replay attacks, nonces
are incorporated within the RPC messages.

2.2 Model

We analyze a system with a predetermined set n
nodes, denoted by i ∈ [n] where [n] = {1, . . . , n}.
A subset F ⊆ [n] contains up to f = |F | nodes that
exhibit Byzantine faults, while the others are consid-
ered correct. These Byzantine nodes are frequently
alluded to as being under the control of an adversary,

who is privy to all the internal states of these repli-
cas, including their cryptographic keys and any prior
data.

The network receives generative and prompt exe-
cution queries from the application and returns the
execution result. Given an upper bound f of mali-
cious nodes for a particular model, the network offers
reliable execution in the following sense:

• If a nodes obtains the same result after k re-
dundant inferences, that result is correct with
probability 1− fk

• If a nodes obtains different results, he can claim
a portion of collaterals from one of the two nodes

2.2.1 Threshold Signature

All replicas possess a unified public key. Each of the
n nodes retains a unique private key. The i -th node
contributes a partial signature ρi ← tsigni(m) on a
given message m.

Partial signatures, represented as {ρi} with i ∈
I and |I| = k, where each ρi ← tsigni(m), can
be aggregated to yield a digital signature σ ←
tcombine(m, ρi) on m. Any replica can authenticate
this signature employing the public key through the
function tverify. It is a necessary condition that if
ρi ← tsigni(m) for every i ∈ I (with |I| = k), and
σ ← tcombine(m, ρi), then tverify(m,σ) confirms as
true.

2.2.2 Hash Functions

We further uphold the primitives of the hash function
previously discussed, emphasizing its collision resis-
tance.

2.2.3 Hyperspace community servers and
Hyperspace inference nodes

In the ecosystem, Hyperspace Community Servers
(HCS) play act as orchestrators, oracles, and se-
quencers within the protocol framework.

Hyperspace Inference Nodes (HIN), in this context,
establish connections with the HCSs, choosing them

4

based on the node operator choice. They communi-
cate their computational capabilities and the range
of models they can execute. The initiation process
involves sending a joinmessage, which includes the
sender’s address. This message is weakly signed, a
measure to prevent forgery and ensure that it cannot
be falsely associated with a different node identity
(see 2.1.2). During the signature verification process,
the HCS examines the cryptographic puzzle associ-
ated with the inference node (HIN), confirming its
validity. The HCS node then informs the HIN about
the dynamic complexity c2 of the cryptographic puz-
zle, as outlined in Section 2.1.1. This puzzle serves as
the identity of the HIN under the HCS sub-network.

Subsequently, Hyperspace Inference nodes make a
secondary communication, the registrymessage, to
the HCS node. This message details the Inference
node claimed specifications and the AI models it is
prepared to support and run inference on.

Following this registration, the HCS node issues
an inferencefortification challenge to the Infer-
ence Node (HIN). This challenge is in the form of a
prompt puzzle, the nature of which is determined at
the HCS node’s discretion. The HIN is then required
to complete the puzzle and deliver the inference re-
sults through a verify-inference call.

This verification process includes a network gas fee
mechanism. If an HIN inference is successfully chal-
lenged by another node in the network, the fee ini-
tially submitted is forfeited and transferred to the
challenger. This system forms part of a broader chal-
lenge fraud proof mechanism, ensuring the integrity
and reliability of the decentralized AI system’s oper-
ations.

2.2.4 Fraud Proof

If a client receives two different replies or a clearly
suspicious one, he can commit a fraud claim to the
blockchain to receive compensation. When a fraud
proof is submitted, other nodes can compute the
query and verify integrity of output. If output is
corrupt, the node submits an on-chain challenge.

The challenge is a synchronous process that hap-
pens on-chain and monitored by an on-chain smart-
contract only requiring the LLM hash. Every node

has a time-window to submit his answer to the other
node until the challenge is done.

2.2.5 Challenge Model

After a challenge is committed, the challenged node
must submit intermediary state roots. The challenger
replies by determining the first corrupt state root and
challenges it. The challenged node then submits in-
termediary state roots between the challenged state
root and the one before it. The process continues
until execution is narrowed down to one transaction,
which is settled on-chain. The total number of sub-
mitted messages during the challenge is logarithmic
in the number of execution steps.

When the challenge ends, the challenged node
gets slashed if the execution is correct, otherwise
the challenger is slashed. The honest node, as well
as the client who submitted the fraud claim, re-
ceive compensation from the slashed node’s collat-
eral. Note that all nodes must be synchronized with
the blockchain at all times.

In the case of neural nets, some parallelism optimi-
sations may make the cost of defining a deterministic
state root sequences heavy on computation. As a
proof of concept, we will explain in detail how the
process works for a simple feed-forward net.

A feed-forward net execution has every neuron re-
ceive the sum of incoming weights times the values
of the neurons before, applies the activation function
and stores it as its value. The value of the neuron is
generally always stored in the RAM, and hence can
be part of the Merkle state.

Take a typical neural network with 10 million neu-
rons, and suppose they have some order. The chal-
lenged node must submit the state root of the neurons
1 million by 1 million, resulting in 10 Merkle roots.
The challenger then computes locally the state roots
and submits the first that is incorrect as a challenge.
There must be an incorrect one since the last one is
incorrect.

The challenged node sends the state root of the 1
million neurons challenged by packets of 100 thou-
sands. The challenger does the same procedure until
it is left to one neuron. We will also have the correct
state of the neurons that precede it in the root just

5

before. The process will take 7 iterations.
The challenger and challenged nodes then bring up

the list of incoming weights and parse it in 10. The
challenged nodes serializes the parallel weighted sum
into 10 packets of parallel weight sums and posts the
state roots on-chain. Similarly, the challenger nodes
challenges the first incorrect computation, until it
boils down to one single link. Again, we will have
a correct state root of the sum of all incoming links
prior to the specific challenged link, and a contested
final link. The on-chain proof will consist of a simple
sum and activation function verification, authentified
by the Merkle root of the link stored in the LLMs
hash. This procedure is logarithmic in the number of
outgoing links.

This is just to reap benefits of parallelism. Other-
wise, we could just make the weights computed seri-
ally and challenged consecutively.

2.2.6 Assumptions

• The weight matrix is stored in a way that allows
parsing (for optimizing the computation process)

• Execution is deterministic

• The activation functions can be understood by
the execution environment

2.3 Economics

In the aforementioned mechanims, all constituent en-
tities are driven to operate with integrity due to
the intrinsic economic structure and the incentiviza-
tion mechanism. Customarily, emerging blockchain
ecosystems introduce distinct tokens to facilitate
this cryptoeconomic protection. Nonetheless, these
nascent tokens may initially struggle to amass the
requisite volume and distribution, thereby impeding
the secure foundation of the ecosystem. This conun-
drum was adeptly addressed by EigenLayer, which
devised a framework to harness Ethereum’s cryptoe-
conomic safeguards by involving Ethereum valida-
tors. The HyperspaceAI Protocol assimilates this
framework and employs EigenLayer operators to am-
plify security within the HyperspaceAI Network.

3 Reference
Baumgart, Ingmar and Mies, Sebastian (2007).
S/kademlia: A practicable approach towards secure
key-based routing, IEEE.
Castro, Miguel and Druschel, Peter and Ganesh, Ay-
alvadi and Rowstron, Antony and Wallach, Dan S.
(2002). Secure routing for structured peer-to-peer
overlay networks.
Cohen, Bram (2003). Incentives build robustness in
BitTorrent, Berkeley, CA, USA.
Maymounkov, Petar and Mazières, David (2002).
Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric, Springer Berlin Heidel-
berg.
Stoica, Ion and Morris, Robert and Liben-Nowell,
David and Karger, David R. and Kaashoek, M. Frans
and Dabek, Frank and Balakrishnan, Hari (2003).
Chord: a scalable peer-to-peer lookup protocol for in-
ternet applications.

6

	BACKGROUND
	Distributed Hash Tables
	Kademlia DHT
	S/Kademlia
	Suzaku and Kirin

	Equilibrium of Computation Exchange

	Hyperspace Protocol Design
	Identity
	Address Assignment
	Message Signing

	Model
	Threshold Signature
	Hash Functions
	Hyperspace community servers and Hyperspace inference nodes
	Fraud Proof
	Challenge Model
	Assumptions

	Economics

	Reference

